Math 115
Fall 2018
Lecture 24

$$
\begin{aligned}
& ? a^{2}+b^{2}=c^{2} ? \\
& y=m+e^{2} d=r t
\end{aligned}
$$

Feb 19-8:47 AM
factor completely:
(1)

$$
\begin{aligned}
10 x^{6}-1000 x^{4} & =10 x^{4}\left(x^{2}-100\right) \\
& =10 x^{4}(x+10)(x-10)
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \frac{6 y^{2}+9 y}{-4 x y-6 x} \\
= & 3 y(2 y+3)-2 x(2 y+3)
\end{aligned}
$$

(3)

$$
\begin{aligned}
& 25 x^{2}(5 x-7)-49(5 x-7) \\
= & (5 x-7)\left(25 x^{2}-49\right)= \\
= & (5 x-7)(5 x-7)(5 x+7) \\
& =(5 x-7)^{2}(5 x+7)
\end{aligned}
$$

(4)

$$
\begin{aligned}
& 8 x^{3}-24 x^{2}-80 x \\
& =8 x\left(x^{2}-3 x-10\right)=8 x(x-5)(x+2)
\end{aligned}
$$

(5)

$$
\begin{aligned}
& x^{2}(x+5)+10 x(x+5)+25(x+5) \\
& =(x+5)\left(x^{2}+10 x+25\right)=(x+5)(x+5)(x+5)
\end{aligned}
$$

(6)

$$
\begin{aligned}
& 24 x^{5}-20 x^{4}+4 x^{3} \\
& =4 x^{3}(\underbrace{6}_{\substack{p=6 \\
S=-5 \\
-2 x^{2}-5 x}}+1) \quad \underbrace{6 x^{2}-2 x-3 x+1} \underbrace{3}+2 x(3 x-1)-1(3 x-1) \\
& 4 x^{3}(3 x-1)(2 x-1)
\end{aligned}
$$

(7)

$$
\begin{aligned}
& 125 x^{3}+64 y^{3} \\
& =(5 x)^{3}+(4 y)^{3}=(5 x+4 y)\left(25 x^{2}-20 x y+16 y^{2}\right)
\end{aligned}
$$

(8)

$$
\begin{aligned}
& 64 x^{4}-343 x \\
& =x\left(64 x^{3}-343\right)=x\left[(4 x)^{3}-(7)^{3}\right] \\
& =x(4 x-7)\left(16 x^{2}+28 x+49\right)
\end{aligned}
$$

(a)

$$
\begin{aligned}
& 625 x^{2}-\sqrt{400 x y+64 y^{2}} \\
& 2.25 x \cdot 8 y \quad-=(25 x-8 y)^{2}
\end{aligned}
$$

Use Zero-Sactor Property to Solve:
(1) $(4 x+3)(x-1)=0 \longrightarrow$ If $A \cdot B=0$, then
$4 x+3=0$ or $x-1=0$
$A=0$ or $B=0$

$$
x=\frac{-3}{4} \quad x=1 \quad\left\{\frac{-3}{4}, 1\right\}
$$

(2)

$$
\begin{array}{ccc}
(x+7) & (x-3)(x+10)=0 \\
x+7=0 & x-3=0 & x+10=0 \\
x=-7 & x=3 & x=-10
\end{array} \quad\{-10,-7,3\}
$$

(3) $x(2 x-5)=0$

$$
\begin{array}{ll}
b=0 & 2 x-5=0 \\
x=5 / 2
\end{array} \quad\left\{0, \frac{5}{2}\right\}
$$

Solve by Sactoring method:
RHS $=0$
LHS factored
(1)

$$
\begin{aligned}
& x^{2}-4 x=-3 \\
& x^{2}-4 x+3=0 \\
& (x-1)(x-3)=0 \\
& \text { by Z.F.P. } \\
& x-1=0 \quad x-3=0 \\
& x=1 \quad x=3 \\
& \{1,3\}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& x^{2}-5=20 \\
& x^{2}-5-20=0 \\
& x^{2}-25=0 \\
& (x+5)(x-5)=0 \\
& \text { By Z.F.P. } \\
& x+5=0 \quad x-5=0 \\
& x=-5 \\
& \{ \pm 5\}
\end{aligned}
$$

Solve
Hint:

$$
\begin{array}{ll}
x^{2}+(x+1)^{2}=(x+2)^{2} & (x+1)^{2}=(x+1)(x+1) \\
x^{2}+(x+1)(x+1)=(x+2)(x+2) & (x+2)^{2}=(x+2)(x+2) \\
x^{2}+x^{2}+x+x+1=x^{2}+2 x+2 x+4 \\
\left.\left.2 x^{2}+2 x+1\right)=x^{2}-4 x-4\right)=0 \\
x^{2}-2 x-3=0 \\
(x-3)(x+1)=0 \quad \begin{aligned}
&(x-3=0 \text { or } x+1=0 \\
& \text { By Z.F.P. } x=3 \\
&\{-1,3\}
\end{aligned}
\end{array}
$$

The product of two consecutive integers is 20 .

$$
x \xi x+1
$$

find all such integers.

$$
\begin{aligned}
& x(x+1)=20 \\
& x^{2}+x=20 \\
& x^{2}+x-20=0 \\
& (x+5)(x-4)=0 \\
& \text { By Z.F.P. } \\
& x+5=0 \text { or } x-4=0 \\
& x=-5 \text { xe }
\end{aligned}
$$

x	$x+1$
4	5
-5	-4

The product of two consecutive even integers is 48 .

$$
x \xi_{1} x+2
$$

find all such integers.

$$
\begin{aligned}
& x(x+2)=48 \\
& x^{2}+2 x-48=0 \\
& (x-6)(x+8)=0
\end{aligned}
$$

x	$x+2$
6	8
-8	-6

By Z.F.P.

$$
\begin{array}{rlr}
x-6 & =0 & x+8=0 \\
x & =6 & x=-8
\end{array}
$$

find two Consecutive odd integers such that the sum of their Squares is 34 .

$$
\begin{aligned}
& (x)^{2}+(x+2)^{2}=34 \\
& x^{2}+(x+2)(x+2)=34 \\
& x^{2}+x^{2}+2 x+2 x+4-34=0 \\
& 2 x^{2}+4 x-30=0 \\
& \text { Divide by } 2 \\
& x^{2}+2 x-15=0
\end{aligned}\left\{\begin{array}{l}
x+\begin{array}{l}
\xi_{1} x+2 \\
\text { By } x+5 \cdot F \cdot P \\
x+5=0
\end{array} \quad x-3=0 \\
x=-5 \quad x=3 \\
\begin{array}{cc}
x & x+2 \\
3 & 5 \\
-5 & -3
\end{array}
\end{array}\right.
$$

A rectangular rug has an area of $40 \mathrm{ft}^{2}$. It is 6 ft longer than its width. Find its dimensions.
$x \quad \begin{array}{r}4=40 \mathrm{ft}^{2} \\ 10\end{array}$

$$
x+6
$$

4 ft by 10 ft

$$
\begin{aligned}
& x(x+6)=40 \\
& x^{2}+6 x-40=0 \\
& (x+10)(x-4)=0
\end{aligned}
$$

By Z.F.P.

$$
\begin{array}{cc}
x+10=0 & x-4=0 \\
x \geq 10 & x=4
\end{array}
$$

Dec 4-7:56 AM

Quadratic Equation: $a x^{2}+b x+c=0$; $a \neq 0$
Quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Solve $x^{2}-8 x+15=0$ by Quadratic formula.
$a=1$

$$
b=-8
$$

$$
\begin{aligned}
& b^{2}-4 a c=(-8)^{2}-4(1)(15)=64-60=4 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-8) \pm \sqrt{4}}{2(1)}=\frac{8 \pm 2}{2} \\
& x=\frac{8+2}{2}=\frac{10}{2}=5 \quad x=\frac{8-2}{2}=\frac{6}{2}=3 \quad\{3,5\}
\end{aligned}
$$

Solve $6 x^{2}+x=2$ by Quadratic formula.

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& 6 x^{2}+x-2=0 \\
& a=6 \quad b=1 \quad c=-2 \\
& b^{2}-4 a c=(1)^{2}-4(6)(-2)=1+48=49 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-1 \pm \sqrt{49}}{2(6)}=\frac{-1 \pm 7}{12} \\
& x=\frac{-1+7}{12}=\frac{6}{12}=\frac{1}{2} \quad \begin{array}{l}
x=\frac{-1-7}{12}=\frac{-8}{12}=\frac{-2}{3} \\
\\
\{-2 / 3,1 / 2\}
\end{array}
\end{aligned}
$$

Solve $(3 x+1)(x-1)=7$ by quadratic formula.

$$
\begin{aligned}
& \begin{array}{l}
a x^{2}+b x+c=0 \\
\\
3 x^{2}-3 x+x-1-7=0 \\
\\
3 x^{2}-2 x-8=0 \\
a=3 \quad b=-2 \quad c=-8 \\
b^{2}-4 a c=(-2)^{2}-4(3)(-8)=4+96=100 \\
x
\end{array}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-2) \pm \sqrt{100}}{2(3)} \\
& \\
& =\frac{2 \pm 10}{6} \quad x=\frac{2+10}{6} \quad x=\frac{2-10}{6} \\
& \\
& \left\{\frac{4}{3}, 2\right\} \quad x=2 \quad x=\frac{-4}{3}
\end{aligned}
$$

Area of a rectangular room is $140 \mathrm{ft}^{2}$. Its length is 1 ft shorter than 3 times its width.
(1) Draw \& label
$x \quad A=140 \mathrm{ft}^{2}$
$3 x-1$
(3) use Q-formula t_{c} Solve
(2) Set-up the ign ξ simplify.

$$
\begin{aligned}
& x(3 x-1)=140 \\
& 3 x^{2}-x-140=0
\end{aligned}
$$

(4) Give the dimensions of the room.

$$
\begin{aligned}
& 3 x^{2}-x-140=0 \\
& a=3 \quad b=-1 \quad c=-140 \\
& b^{2}-4 a c=(-1)^{2}-4(3)(-140)=1681 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-1) \pm \sqrt{1681}}{2(3)} \\
& =\frac{1 \pm 41}{6} \quad x=\frac{1+41}{6}=\frac{42}{6}=7 \\
& 7 \mathrm{ft} \\
& 3(7)-1=20 \mathrm{fl}
\end{aligned}
$$

Find x : Right Triangle

use Pythagorean Them

$$
\begin{aligned}
& x^{2}+12^{2}=13^{2} \\
& x^{2}+144=169 \\
& x^{2}+144-169=0 \\
& x^{2}-25=0 \\
& (x+5)(x-5)=0 \\
& B y Z \cdot F \cdot P \cdot \\
& x+5=0 \quad x-5=0
\end{aligned}
$$

check:

$$
\begin{array}{ll}
5^{2}+12^{2}=13^{2} & \text { By Z.F.P. } \\
25+144=169 & x+5=0
\end{array} x-5=0
$$

find x :

Right Triangle
Use Pythagorean thru $(x-2)^{2}+x^{2}=(x+2)^{2}$ $a^{2}+b^{2}=c^{2}$

$$
(x-2)(x-2)+x^{2}=(x+2)(x+2)
$$

$$
x^{2}-2 x-2 x+4+x^{2}=x^{2}+2 x+2 x+4 x
$$

$$
x^{2}-4 x-4 x=0 \quad \mapsto x(x-8)=0
$$

$$
x^{2}-8 x=0
$$

By E.F.P.

Right Triangle
Pythagorean thrm

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
(x-1)^{2}+x^{2}=(x+1)^{2}
\end{gathered}
$$

$$
\begin{aligned}
& (x-1)(x-1)+x^{2}=(x+1)(x+1) \\
& x^{2}-x-x+1+x^{2}=x^{2}+x+x+1 \\
& x^{2}-2 x-2 x=0 \quad x^{2}-4 x=0 \\
& x(x-4)=0
\end{aligned}
$$

Class Qz:
(1) Solve: $(x-4)(x+8)=0$

$$
\begin{array}{ll}
x-4=0 & x+8=0 \\
x=4 & x=-8
\end{array} \quad\{-8,4\}
$$

(2) Solve $x^{2}-1=80$

$$
\left.\begin{array}{rlrl}
x-1 & =80 \\
x^{2}-1-80 & =0 \\
x^{2}-81 & =0
\end{array} \quad \rightarrow \begin{array}{rl}
(x+9)(x-9) & =0 \\
x+9 & =0 \\
x & x-9
\end{array}\right)=0
$$

(3) Solve $x^{2}-24=2 x$

$$
\begin{aligned}
& x^{2}-24-2 x=0 \\
& x^{2}-2 x-24=0 \\
& (x-6)(x+4)=0
\end{aligned} \rightarrow \begin{aligned}
& x-6=0 \\
& x=6 \\
& \{-4,6\}
\end{aligned}
$$

Dec 4-9:12 AM

